To find the percentage that a single unit represents out of a whole of N units, divide 100% by N. For instance, if you have 1250 apples, and you want to find out what percentage of these 1250 apples a single apple represents, 100%/1250 = (100/1250)% provides the answer of 0.08%. So, if you give away one apple, you have given away 0.08% of the apples you had. Then, if instead you give away 100 apples, you have given away 100 × 0.08% = 8% of your 1250 apples.
To calculate a percentage of a percentage, convert both percentages to fractions of 100, or to decimals, and multiply them. For example, 50% of 40% is:
- (50/100) × (40/100) = 0.50 × 0.40 = 0.20 = 20/100 = 20%.
The easy way to calculate addition in percentage (discount 10% + 5%):
- y = [(x1+x2) - (x1*x2)/100%]
- y = [(10% + 5%) − (10% * 5%) / 100%] = [15% − 0.5%] = 14.5%
[edit] Example problems
Whenever we talk about a percentage, it is important to specify what it is relative to, i.e. what is the total that corresponds to 100%. The following problem illustrates this point.- In a certain college 60% of all students are female, and 10% of all students are computer science majors. If 5% of female students are computer science majors, what percentage of computer science majors are female?
This example is closely related to the concept of conditional probability.
Here are other examples:
- What is 200% of 30?
- Answer:
- What is 13% of 98?
- Answer:
- 60% of all university students are female. There are 2400 female students. How many students are in the university?
- Answer: , therefore .
- There are 300 cats in the village, and 75 of them are black. What is the percentage of black cats in that village?
- Answer: , so and therefore n% = 25%.
- The number of students at the university increased to 4620, compared to last year's 4125, an absolute increase of 495 students. What is the percentual increase?
- Answer: , so , and therefore n% = 12%.
[edit] Percentage increase and decrease
Sometimes due to inconsistent usage, it is not always clear from the context what a percentage is relative to. When speaking of a "10% rise" or a "10% fall" in a quantity, the usual interpretation is that this is relative to the initial value of that quantity. For example, if an item is initially priced at $200 and the price rises 10% (an increase of $20), the new price will be $220. Note that this final price is 110% of the initial price (100% + 10% = 110%).Some other examples of percent changes:
- An increase of 100% in a quantity means that the final amount is 200% of the initial amount (100% of initial + 100% of increase = 200% of initial); in other words, the quantity has doubled.
- An increase of 800% means the final amount is 9 times the original (100% + 800% = 900% = 9 times as large).
- A decrease of 60% means the final amount is 40% of the original (100% − 60% = 40%).
- A decrease of 100% means the final amount is zero (100% − 100% = 0%).
It is important to understand that percent changes, as they have been discussed here, do not add in the usual way, if applied sequentially. For example, if the 10% increase in price considered earlier (on the $200 item, raising its price to $220) is followed by a 10% decrease in the price (a decrease of $22), the final price will be $198, not the original price of $200. The reason for the apparent discrepancy is that the two percent changes (+10% and −10%) are measured relative to different quantities ($200 and $220, respectively), and thus do not "cancel out".
In general, if an increase of x percent is followed by a decrease of x percent, and the initial amount was p, the final amount is p((1 + 0.01x)(1 − 0.01x)) = p(1 − (0.01x)2); thus the net change is an overall decrease by x percent of x percent (the square of the original percent change when expressed as a decimal number). Thus, in the above example, after an increase and decrease of x = 10 percent, the final amount, $198, was 10% of 10%, or 1%, less than the initial amount of $200.
This can be expanded for a case where you do not have the same percent change. If the initial percent change is x and the second percent change is y, and the initial amount was p, then the final amount is p((1 + 0.01x)(1 + 0.01y)). To change the above example, after an increase of x = 10 and decrease of y = − 5 percent, the final amount, $209, is 4.5% more than the initial amount of $200.
In the case of interest rates, it is a common practice to state the percent change differently. If an interest rate rises from 10% to 15%, for example, it is typical to say, "The interest rate increased by 5%" — rather than by 50%, which would be correct when measured as a percentage of the initial rate (i.e., from 0.10 to 0.15 is an increase of 50%). Such ambiguity can be avoided by using the term "percentage points". In the previous example, the interest rate "increased by 5 percentage points" from 10% to 15%. If the rate then drops by 5 percentage points, it will return to the initial rate of 10%, as expected
No comments:
Post a Comment